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1. Introduction-

Let wW, ... , 3k be k (> 2) independent populations where vi has

the associated distribution function F(x, ei) and density f(x, et)

with the unknown parameter 01 belonging to an interval (a, b) of the
i0

real line. Our goal is to select a subset (preferably small in size)

of the k populations , .... Wk that will contain the best (suitably

defined) among them.

In practice, it sometimes happens that the actual values of the

random variables can only be observed under great cost, or not at all,

while their ordering is readily observable. This occurs for instance

in life-testing when one only observes the order in which the parts

under investigation fail without being able to record the actual time

of failure. i problems of this type, one may desire to investigate

decision rules based on ranks.

In dealing with the goal specified above, Gupta and Mcorald

(1970) studied three classes of subset selection rules based on ranks

for selecting a subset containing the best wain k populations WM

the underlying distributions are unknown. When the for of the under-

lying distributhm is known but the values of the parameters fi,

i 1, ... , k, are unknown, Gupta, oean, and Nagel (1979) studied some
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locally optimal subset selection rules based on ranks. The latter

study leads to the conclusion that the class of subset selection rules

R of Gupta and McDonald (1970) is locally optimal in some sense.

Huang and Panchapakesan (1982) also studied the problem of deriving

some subset selection rules, based on ranks, which are locally optimal

in the sense that the rules have the property of strong monotonicity.

All the studies mentioned above only considered the situation where

the ranks are completely observed.

We now consider a problem as follows: Suppose that there are k

different devices and we want to select the best among them. From

each kind of device, say W, n prototypes are taken for experiment

and the N = kn prototypes are simultaneously put on a life test.

Due to design reasoning or cost consideration, the experiment termi-

nates as soon as the first r failures among the N devices are observed

for some predetermined value r, where 1 < r < N. Based on these r

observations, we want to ascertain which device is associated with the

largest (expected) lifetime. Since we are only concerned with the

first r failures, we call this censoring scheme as a joint type II

censoring.

In this paper, we are interested in deriving subset selection

rules which satisfy the basic P*-condition and locally maximize the

probability of a correct selection among all invariant subset

selection rules based on the ranks under the joint type II censoring.

We assim that the functional form of the density function f(x e) is

known but the value of the parameter n is unknown. In Section ?,
• ,lt
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the problem is formulated. Some properties related to the ranks under

the joint type II censoring are also given. Following the earlier

setup of Gupta, Huanq and Nagel (1979), a locally optimal subset

selection rule R1 is derived in Section 3. The property of local

monotonicity related to the rule R1 is also discussed in Section 4.

Finally, a comparison between the subset selection rule R and that

of Huang and Panchapakesan (1982) is discussed in Section 5.

2. Formulation of the Problem

Let, 1, .... I k be k (1 2) populations and let f(x, at) be the

density function associated with the population w, for I = 1, ... , k.

Let GM < "" < 0[k be the ordered parameters of , ..., ek  Of

course, the correct pairing of the ordered and unordered ei is unknown

to us. The population associated with e1k is called the best popula-

tion. In case of a tie, one of the contenders is tagged and is called

the best. Let - {1 - (e, ... , e)) and - {e£fle1 - . .. - e}

Let .j, ... , n be independent observations from wi and let

R Ri denote the rank of X in the pooled sample of the N * kn

observations. The smallest observation has rank I and the largest

has rank N. Lot. .x. deote the ordered observations.

IN Lt
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Definition 2.1. A rank configuration is an N-tuple A-(A, ... , )

i €{1, ..., k where A, j means that the ith smallest observation

in the pooled sample comes from j.

Let L W{A denote the set of all rak configurations. For each

A-EL, let x ={x = (x ... ,xN) exIA x = A), where x - {x - (x,....,XN)}

and Ax denotes the rank configuration of x = (xl,...,xN).

Let r be a predetermined integer such that 1 < r < N. Under the

joint type I! censoring scheme, only the first r smallest observations

in the pooled sample of the N (X1i, j - 1, ..., n ; I a 1, ..., k)

are observed. That is, for the rank configuration 4x a (A 1 , "'" AN)'

only the subvector (A1, ... , Ar) Is observable. For this preassigned

value r, let Cr be a function defined onLsuch that for each

- (A, ... , Rc) L, Cr() - (A1 , ... , Ar) - (r). LetLr Cr(L) .

Then, L r  (A(r)A cL. Hence, for each A(r)CL r, max(O. r - (k-1)n)

r
r 1 [1{1(Ai) min(r, n ) for each 1 a 1, ..., k, and

J-l

* r r. We call A(r) as a Joint type II censored rank cniue

11

tion.

For each a(r)c Lr, define the set L(A(r)) -(Ac LICr(i) -(r)).

Let IAI denote the number of elvemnts in the set A. Then,

ir1

IL~~r)I (N - r - I(n r 1*



5

0
where B - 0. Also,

1

A(r CLr IL((r)) 
N!/(n!)

k

Let D be the decision space consisting of all the 2k subsets of

the set (1, ... , k. Any subset is denoted by d so that D-

(djd E (1, ... , k}. A decision d is the selection of a subset of

the k populations. The fact that icd means that population wt is

included in the selected subset if decision d is made. Let 6(A(r), d)

denote the probability that the decision d is made if the censored

rank configuration 4(r) is observed. Let ct(A(r)), i- 1.... k,denote the

individual selection probability of the k populations, where

) d 6(4(r), d), (2.1)

d1i

the summation being over all the subsets containing i.

Definition 2.2. A subset selection rule R based on the censored

ranks is a measurable mapping from Lr into [0, 11 such that

R(6(r)) - (cx1(A(r)), ... , (. ))

Let Pi(e) denote the probability of including the population vt

in the selected subset when O w ( 1  ... , O are the true parmeters.

That Is, P(g) a E (s1 (A(r))J where the expectation Is over ihe set

Lr Any decision d that corresponds to the selection of the best

WIN

"7_
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population is called a correct selection (CS). The probability of a

correct selection is denoted by Pe(CSIR) when the subset selection

rule R is applied.

Let G denote the group of permutations g of the integers 1,..., k.

We write g(. Q, k)= (gl, ..., gk). Let h denote the inverse of g

and define g(eOI  ... *0 k) - (ehl9 ..., ehk).

For each c cL, 4(r)cLr , let gand ?be defined by 7 & (ga 1 , ....g'N)

and ?A(r) =(gA, ..... gAr), respectively. Thus, both g and I are

induced from g. Let G = (g} and G - (i}. It is easy to see that

Cri) =(Cr(A)). Also, Ac L(A(r)) 1ff gAL(f(r)). Hence,

!L(_A(r))I .IL(A(r))I (2.2)

for each A(r)c Lr and for each We?.

Definition 2.3. A subset selection rule R on Lr is invariant under

permutation if and only if (OkiZ(r)), ... , ak(1A(r))) - g(*l(O(r)),

. Qk((r) for all A(r)cLr, gcG and T induced from g.

Let f(x, @,) be the density function associated with population

wt with the parameter 0i belonging to some interval (a, b) of the

real line, where -, ' a < b <et. Let a a (0le (e, .
• {Q cnIe 1 " "'" " k) and ai ( (Cotle, _ for all J 0 1).

Furthermore, let the density f(x, 0) have the following properties:
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Condition A:

() f(x, 9) is absolutely continuous in e for every x;

(ii) f(x, e)- ! f(x, e) exists and is continuous in a

for every x;

(iii) 1. #Ir(x. O)tdx [i(x, 00)Idx <-
0

holds for every 90c (a, b).

Now, under the assumptions of Condition A. our goal is to

derive an invariant subset selection rule R, based on the Joint

type II censored ranks, such that

)(I) inf P.o(CSIR) . P* where P* c(, 1) is prespecified;
2odo -0

(ii) Po(CSIR) Is as large as possible for all 0 In a

neighborhood of i e q

Note that for each 10"c1O. Pe (CSIR) will be interpreted as the

probability of selecting a specified population.

" - .. .*.t* mm m mmi



8

3. A Locally Optimal Subset Selection Rule

For each 0 cs], A(r) cLr , let P,( (r)) denote the probability

that the joint type II censored rank configuration A(r) is observed

under 0. Also, let PQ( )4c L, denote the probability that the

complete rank configuration A is observed under e. Then,

(A) =(n!)k f f(x, )dxl ... dxN. (3.1)0 ... j!, f xj 1

It is also clear that for each A(r)EL

POr(r)) -)) Pa(A)" (3.2)

Let e 0 - (009 -- 1. 90)cO , where eOG (a, b). By applying a

simple algebraic computation, P,(4) can be written as follows:

k
P (A) (nl)k[oA(eo) (a - e0 )Ai(4, 0 - (3.3)

0 0 =1 0

where AO( O) .0 . 1 f(xJ, O)dxl...dxN " which is0- fC -00 JZ1 1 N

independent of OW

N x eN .. x2
A1(4, !0 . 1 " J ... q(i, j.20. 2, !)dxle..dxN (3.4)

for each t * 1, ... , k, where x (x,, ... , x N) and
fo eah i
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f(xj 9 i)-f(xj ,0 ) i-I N
= n f(xmo) n f(xm,e6M).

0 N
Here, we define II = 1, n= 1 and [f(x 19et) -f(xj9 eo)]/(e i -eo) o

j=1 I JN+I

if eI = 80.

Let 20 c% and let 11@ - o1l - max le, - e0l.
1< ick

Thus, if 8 = (e, .... Ik) is in the neighborhood of 0 with e t  0

for all = 1, ... , k, then, under the Condition A, following an

argument analogous to a theorem (page 71) of Hajek and Sidak (1967),

we have

N

li Ai(A. 80' 2) = A*(A, 0 = Bj(O 0)(
M. to)f-0 3=.5)

and

NIA 1 (0 20o)l' I, (2o)l <-
J1

for each 1 = 1, ... , k, where

X N X2 N
B(eo -. J (x,.eO) R f(xM , e0)dX1 ... dXH. (3.6)

m~t

That is, there exists an c > 0 such that as 0 < IIQ - toll <

AI(-, t0' Q) is approximately equal to A((, 1.) for each 1 - 1, ... k.

'II

*, \
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Lemma 3.1. Suppose that the density function f(x, 8) satisfies the

N
Condition A. For each e0 c(a, b), let V(%) 1 Bj(0 O) where

j=1

20 = (eO, ... , 00 ) E%. Then v(e) 0 for all 0 0 E (a, b).

Proof: Note that for each eO c (a, b),

N N xN 2 x N
[ ej(QO) = F f.-. f~x= O  rni f(xm , %0)dX1 *-*dXNr (N *Q I2 f(Xio) f(Xm 9)dX ... dXN

m#j

N ... Lx2 N N~l

f 1 M=X

where the last equality Is obtained under Condition A.

Therefore V(O) = 0 for all 00c(a, b) since

dZ N 1

• .e. f(xm, e) dX1 ... dXN j which is independent of

0. This completes the proof of this iema.

Il



Lema 3.2. Let 0 Q and let Pi(-) = Ee [L(6(r))] be the probability

of including population vi in the selected subset under e by applying

an Invariant subset selection rule R. Let G(l) -{g cGjglil}. Then ,

*P 1(2) - A~r 1L(O(r)) I + (k-1- W(4(r).j. 0 ~) JL N
a(rLr

where

k

W(A(r). q, 20, G(i)) -E(!r)g ( eh  e) A(A. %, ge)
AEL(A(r)) geG J ul jj~h

h is the inverse of g G(i) and 0 - (, ...' 60) caO"

Proof: This lemma can be verified by following an argument analogous

to that of Gupta, Huang and Nagel (1979, page 257). We omit the

detail here.

Lemma 3.3. Suppose that the density function f(x, e) satisfies the

requirements of Condition A. Let G(1) N (gEGjgi'i) . Then,

k
gu ()-e )A*(.A eo) (k-2)ICke1 - U)A1(&, 90

I

gel( i) jj1 mhj 0 j-'0 
A*O2)

k

for each i - 1, ..., k, for each0 eg, 00 E% where u - J and h

is the inverse of g cG(i) and 4 cL.

Proof: First note that Aj(A. 00)I B (B) m(Oo,.:.,,, . -,o1 . mii, ~

which is obtained from Lema 3.1. Now,

,--"".. . ............. ....... °..................... .....................
• ..__ . ; 7 .. . ..._-
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k

g1(i) 1 ( j " A0;(--o)

k" A * (A,

k8 
+

g Z A(€ ,°oO) )) e + k- ) oIA . 8hlO1 EG j 1 0gEG()i)
i'll

k k

jti m#i

k
(k -2)!(U -0 I A;(&e.o) + (k-lZe0A(.,o }

jji

= (k-2)!(kOi -U)A!(t,. o)

where the first and the last equalities are obtained due to the fact
k

that I A(,O = 0. This completes the proof of Lemma 3.3.
J. J

Theorem 3. 1. Let 6 ci be any point In the neighborhood of 0 Co .

Let Pt(2) - Ee Ic1((r))l be the probability of including population

IF in the selected subset under e by applying an invariant subset

selection rule R. Then, under the condition A, for each - 1,2,...,k,

P (2) - E [ I k-I T*(A(r),QO)aJ (A(r))}, (3.7)

where

0 1(A- -o (3.8)
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Proof: It is trivial that under the condition A, (A(&,O)t ,

and IA(8,e0)I < - for all i - 1, ..., k. It is also clear that

(Bj -0o)At(A,20,ge) = (ej -eo) A*(A,eO) if ej = eo. Thus, we assume

that 8j s for each J = 1, ..., k. Note that = 11g22011

for all sEG. Then, by the assumption and (3.5), we can choose

e > 0 so small that as 112 - 201 < , Ai(, 20, g0) - A*(A, eO) for

all gcG and so (hj -e0O) Ai(4, %, g) 20. e"O) A*(A, eO) for all

geG where h is the inverse of g. Thus, either min e -o0 - 0

or min 1e -ol > 0, if Hi§ - 2oi < c, we have
104k

k
Gi) -I (ehi - eo)A( q, O go)

k (eh .o)A;(O , to)  (3.9)

gEG(i) hi 0

* (k -2)t(kei -U)A*(,e 0 )

where the last equality is due to Lemma 3.3. Then, by Lemma 3.2

and (3.9), we obtain

Pi(0)

E(ke i -U)N!

201E,~ k-

This cam~letes the proof of Theorem 3.1.
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Now, define subset selection rule R as follows:

1 if T*(O(r), eo) > c(20);

*i(o(r)) p(20) if T*(O(r), O) - c(e0 ); (3.10)

0 if Ti(4(r), to) < ¢(qO);

where the constants c(0O) and p(Qo), (0 < p(QO) < 1), depend on the

parameter 60, and can be determined by

P e{T(4(r),O) > c(go)} + p(eo)P (T;(A(r), 0 ) - c(eo)) =P*. (3.11)

We then have the following theorem.

Theorem 3. 2. Suppose that the density function f(x,e) satisfies

the Condition A. Then, the subset selection rule R maximizes

YP(CSJR) in a neighborhood of Qo E10, among all invariant subset

selection rules, based on the Joint type II censored ranks, satisfy-

ing inf P (CSIR) - m*.

Proof: ithout loss of generality, we assume that wk is the best

population. Then by Theorem 3.1 ,, for any Qe0 k in a neighborhood

of eo E%.

P (CS(R) - Pk(2)

E +(kek'U)NI )] }t {O + k - -I Tk r'oal(()

k-I
Sise , -U (  ej)o. hh ta y m-Perm l.a we

mutcive this theor-m.

vwwpr" 77



4. Local Monotonicity of the Subset Selection RuleR

Let R be a subset selection rule and P1(e) be the associated

probability of including population w i in the selected subset for

each i = I,.., k, when e is the true parameter.

Note that by definition of P()

P() E Eea(Ar) (4.1)

where P (a) is defined in (3.1).

Let 8*. Under Condition A,

exists for each J 1,...,k and83

j OW

liia a ~Bm(O0o)x(n!) A (4.20 )(Mi)k

where a.(jO), A (4,e0) are defined in (3.6) and (3.5), respectively.

Therefore, we have

ii,*- -. 30 u-* a n

.01~~I~ as 80* a (4.2)

*(RI) 1& L( ir))"O (.l ())
#(ar[W- )

IM -7 7TS8M

77 -Z.
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1 n P1(e) at-)

(M k1. (4.3)
MOC (n)k ar) cr.L(A(r) )

V j'i.

Definition 4.1. A subset selection rule R is locally strongly

monotone at point Q. c DO if for each 1 1, ... , k, > 0

and _ o for all J # i.

The following lemmas are needed for deriving the locally strong

monotonicity of the subset selection rule R1.

Lemma 4. 1 Let gEG and gc and gE9 are that induced from g.

Then, for any A EL, A(r)c Lr, we have

A*ti, ) A*(4, 20)

for each i - 1, ... , k.

Proof: From (3.5), we have

A (4. 20) B(Q0) aB(2 0)

N
Jul!

I j~z (!). A*, ,

.2
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Now, we see that for each 1-1, ... , k, A ~(4.) depends on

only through whether Aj - t or not for each j - ,..., N, and

when i , then A*(4,00) is Independent of the value of A

Similarly, T*(A(r), eo) depends on A(r) only through whether Aj - i

or not for each J - 1, .... r, and when Ai # 1, then T;(A(r), 20)

is independent of the value of A Thus, for the subset selection

rule R1, ac(4(r)) depends on A(r) only through whether Ai a i or

not for each j = 1, ... , r.

Let gcG(i). Since g does not change the position of index I,

therefore, for each A(r) eLr, i(r4(r)) - aj(4(r)) where 19 is

induced from g. Now, according to the value of at(O(r)), the set

Lr can be partitioned into three classes, say,
r

L .L(0)U() UL (p(20) where L 'A)((r'' #()r r rJ1 1 r *o)r( L r ~iotA~) B

for B 0, 1 or (Qo).

I
Lean 4.2. Let gcG(i) and gcG be the one Induced from g. Then

"(L t(0)) -L 1 (0) for each B 0, 1 or 0(20).r r

Proof: For each B, let A(r)c Lt(S). Then at((r)) uand so
*t(%(r)) - 0 since gcG(i). Therefore TA(r)cL i(o). That is,

- r
(L 1(0)) L (0). Also, TL * i.T fl) for

som 0, w then have ILr Lr Which is a centraCctlon. Therefore,

Irr(O)" ( ) for each 0a o, 1 or 10%)"

O -i
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Lem 4 For each fixed i and m i, j i and m J, we have

C d! ) A(A 2oJni(O(r))

(r)E L (B)) "-

a (r)c L~r(s) j ~LA~)

for each 0 0 0, 1 or

Proof: Let gcG(i) and satisfies that gm - J, gj .m. Then.

§(r) L i(o) r)

rj

"1r3 L (B)j(ghA, !o (by Lemma 4.1)

0 (0.) [4c dO(r))A(1.Q]

.(r)e -i L

_(r)e Ll(0) LCL( Or))J

a (r ) ell ( 0) I O(AN)-, z , .: A;(#. !0) (by Law s 4.2)

This co1etos the proof of tm 4.3.

-. .r.-- -
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The following corollary Is a direct application of L010144.3.

CorollIary 4. 1. For each fixed I and mg #1, J 0 1, we have

sP1(e) VP1(!)

Thoe -L Suppose that the density function f(x,O) satisfies

the Condition A. Then, the subset selection rule Ris locally

strongly monotone at each e~ c%

Proof: By Corollary 4. 1, for each m Il, we have

kk

k - I. LI I I f10.

k. k

.Q'! r 4.(~ m(~)
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Therefore, it suffices to prove that p-- 0 for
ae 1~

each 0 %. Now,

#(r)c L r
.AN,. L A-eA.())I ,, o

A* . e)

" AC (, e1 ) (4.4)

N
~N
', i[ J1Ej(o) 11(tAj )

(N-l N
(M)k- (-i)! ji. sI (o)

N
since Bj(fO) a O which Is due to Lem 3.1 under Condition A.

Jul "

Then, by (3.13) and (4.4), we see that

4(r)cLr Aj(r)) (49 0Mr)~

Therefore aufit)j 0. Home. the subset selection le R is

locally strongly mmnotone at ,ich to 9%.
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5. Remarks.

(1) Note that when r - N, that is, in the complete

rank configuration case, this locally optimal subset selection rule

R1 turns out to be the one studied by Gupta, Huang and Nagel (1979).

(2) This locally optimal subset selection rule R! is basedon theweighted

rank sum Bj(o) u 1 J 1 (1.u)N.j#(u, f, eo)du where- a(j-lI)! (N'J)! 0 o

#(u, f, 6) - f(F'1 (u, e). e)/f(F 1 (u, e), e). In general, *(u, f, e)

depends on 0. However, it is independent of 9 if 0 is a location

parameter (see Gupta, Huang and Nagel (1979)). In this situation,

the value i (O) is independent of O0. Therefore, the two constants

c(20) and p(%O), which are used to determine the rule R1, are also

independent of e0 for each fixed p* value.

(3) Suppose that 0 6 0 Is a scale parameter, that is, f(x, 0)

*h(O(x - u)) for some function h(,). Let 01, 02 > 0 such that

02 a 091 . Then, #(u, f, 2 ) - I(u, f, Y. Therefore, Bj(Q2)

k Dj)for each ji=1 ... , N, where e - (e,. e ) 6%.

I - 1, 2. In this situation, for each fixed p* value, we have

c(12) (g1) and ,(Q2) a p(01).

Huang and Panchapakesan (1982) also derived a subset selection

rule, say Rnp . based on the complete rank configurations, which can

be represented as follows:

I if A(#. t V(o) + o

0 -f 4 V() + (

0 If A*(A. 0) 0
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where 0 and p(O < p < 1) are chosen so that

oA( O > V( O  D + pP(A*(A, eO) - V(eO) +D} - (5.2)

and V(e0 ) + D > 0.

The rule RHP is always locally strongly monotone provided the con-

stants 0 and p satisfying (5.2) exist. However, as pointed out

by themselves, it is possible that the 0 and p satisfying (5.2)

may not exist. In such a case, the rule RHP selects the empty subset.

The following example indicates that the rule RHP always selects the

empty subset when p* >

Examle Let k (> 2) and n be positive integers and let

N a kn. Let f(x,O) be the logistic density f(x,e) - e-

ll + e'(x-e)] 2, - < x < - < m. It is clear that f(xO)

satisfies the Condition A. Then by Lema 3.1 , v(e0) - 0 for all

eo 0fO" Also, *(u, f, 0) * 2u - 1, which leads to equally spaced

scores and

BJ(20)(5.3)

Note that BJ(Q O) * BN+I~jO)  0 for each J - 1, ..., N.
Therefore, for each A- (A1, ..., N) eL. lt A 1

where A aA N+I. for each j e ... N. Then 1 cL. By (5.3)

and the definition of A(A, 1O), we have A;(40 U) + A;( 1 , 0)  0

for all a L, to , which Implies that P A o)

...a_, 7M. ,

. 77
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for all 80 61 Hence, for p* > there exist no D and0 0'

p (0 < p < 1) such that (5.2) is satisfied.

However, for the subset selection rule R1, the corresponding

two constants c(e0) and p(eO) always exist when p* (-!, 1), and the

rule Ri s always locally strongly monotone which is guaranteed by

Theorem 4.1.
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